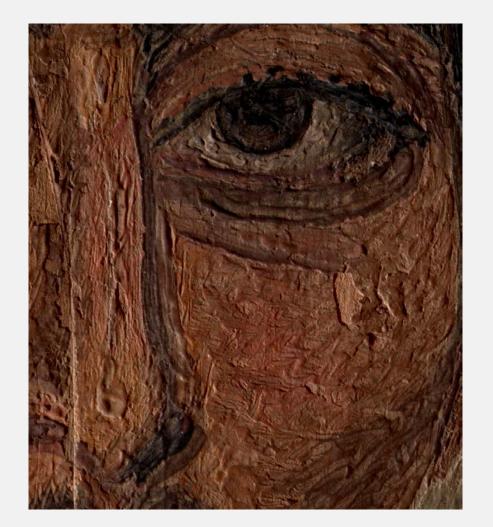
TEXTURE IMAGING FROM CAPTURE TO ACCESS

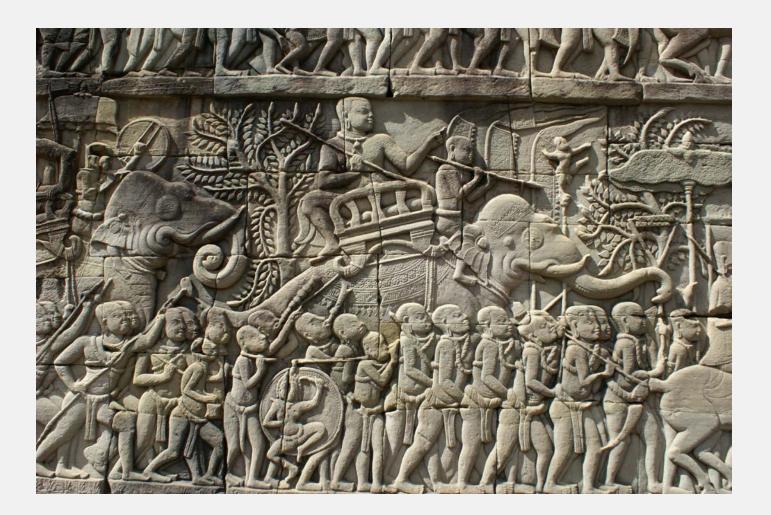
Todd R. Hanneken, Ph.D. Jubilees Palimpsest Project Saint Mary's University, San Antonio http://jubilees.stmarytx.edu

- Deliberate
- Non-deliberate

- Deliberate
 - Cuneiform
 - Inscriptions
 - Coins
 - Dry-point
 - Painting
 - Bas-relief
 - Figurines
- Non-deliberate

- Deliberate
 - Cuneiform
 - Inscriptions
 - Coins
 - Dry-point
 - Painting
 - Bas-relief
 - Figurines
- Non-deliberate

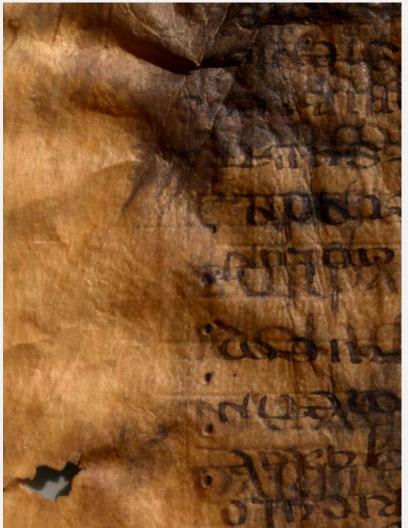

- Deliberate
 - Cuneiform
 - Inscriptions
 - Coins
 - Dry-point
 - Painting
 - Bas-relief
 - Figurines
- Non-deliberate


- Deliberate
 - Cuneiform
 - Inscriptions
 - Coins
 - Dry-point
 - Painting
 - Bas-relief
 - Figurines
- Non-deliberate

- Deliberate
 - Cuneiform
 - Inscriptions
 - Coins
 - Dry-point
 - Painting
 - Bas-relief
 - Figurines
- Non-deliberate

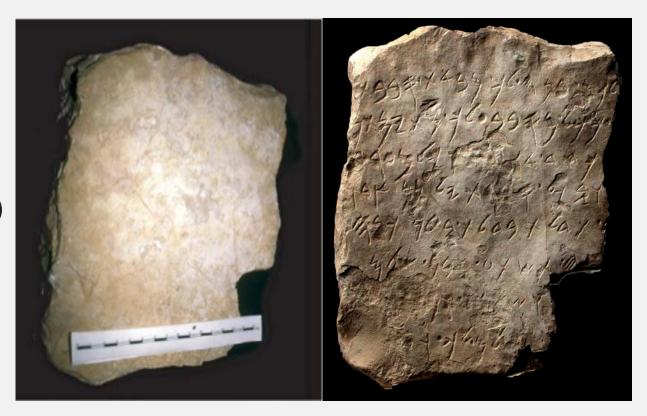

- Deliberate
 - Cuneiform
 - Inscriptions
 - Coins
 - Dry-point
 - Painting
 - Bas-relief
 - Figurines
- Non-deliberate

- Deliberate
 - Cuneiform
 - Inscriptions
 - Coins
 - Dry-point
 - Painting
 - Bas-relief
 - Figurines
- Non-deliberate


- Deliberate
- Non-deliberate
 - Corrosion of ink into parchment
 - Thickness and flaking of ink
 - Holes and accretions
 - Warp and cockle
 - Evidence of use
 - All the little things that make manuscript specialists say there is no substitute for first-hand inspection

- Deliberate
- Non-deliberate
 - Corrosion of ink into parchment
 - Thickness and flaking of ink
 - Holes and accretions
 - Warp and cockle
 - Evidence of use
 - All the little things that make manuscript specialists say there is no substitute for first-hand inspection

- Deliberate
- Non-deliberate
 - Corrosion of ink into parchment
 - Thickness and flaking of ink
 - Holes and accretions
 - Warp and cockle
 - Evidence of use
 - All the little things that make manuscript specialists say there is no substitute for first-hand inspection


DIGITIZING TEXTURE OF CULTURAL HERITAGE OBJECTS

- Line drawings
- Raking light
- Laser scanning and photogrammetry
 - Distinguish structural boundary from texture
- Reflectance Transformation Imaging (RTI)

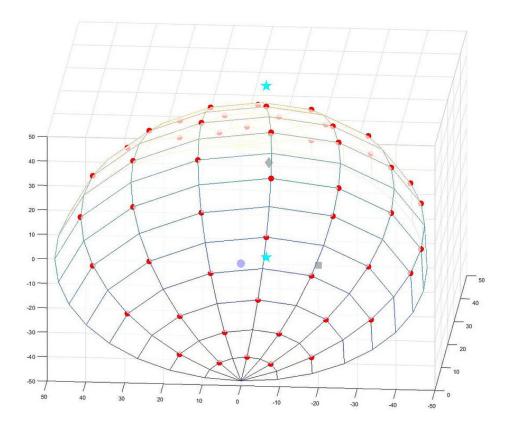
ETHE ENDER ETHEN ENDER ETHEN ETHEN ETHEN ETHEN WALESTE JANTAN INTAN INT A THE THE FIRM TETERIH A THE ETHET TETERIH TENAN DENTE 12 FILL THE TENAN DENTE 12 FILL THE TAPEST WATER TO THE TAPEST THE TATA TE & TATA THE TATA TE & TATA THE AT THE AT THE AT שיוהודיביבו איז שיוחיובע שיוהודיביבו איז שיוחיובע WALES TAKING WALES TAKING A THAT IN FIRM TO FAULT A THAT IN FIRM TO FAULT THATAN DEMTERSA FRANCES DEMTERSA FRANCES הדאן יוואלי ולאוגראל שביע הדאן יוואלי לאוד איז איז באיהוליביע האובאיוואירע באיהוליביע האודאיוואירע

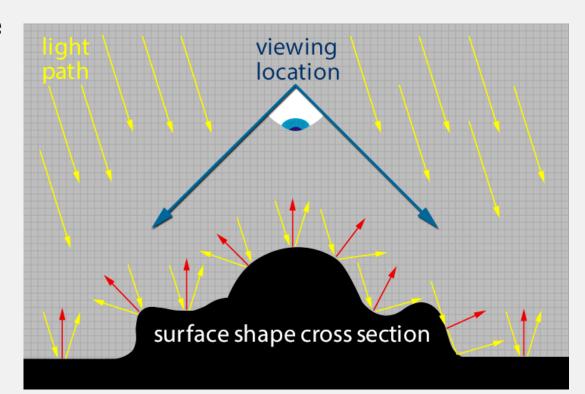
DIGITIZING TEXTURE OF CULTURAL HERITAGE OBJECTS

- Line drawings
- Raking light
- Laser scanning and photogrammetry
 - Distinguish structural boundary from texture
- Reflectance Transformation Imaging (RTI)

DIGITIZING TEXTURE OF CULTURAL HERITAGE OBJECTS

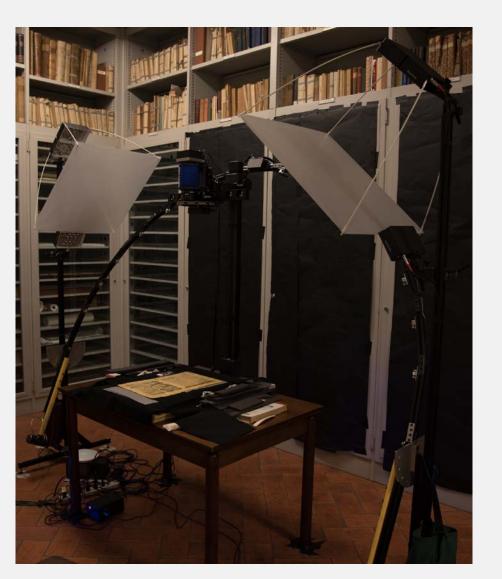
- Line drawings
- Raking light
- Laser scanning and photogrammetry
 - Distinguish structural boundary from texture
- Reflectance Transformation Imaging (RTI)



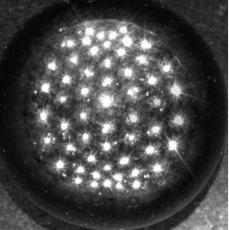

- Object and camera remain in same position
- 35-60 raking light captures evenly distributed around a virtual hemisphere
- The radius should be consistent (for exposure settings) and as large as possible (for collimation)
- Lights can be mounted on a physical dome, a handheld flash, or a swinging arc

- Object and camera remain in same position
- 35-60 raking light captures evenly distributed around a virtual hemisphere
- The radius should be consistent (for exposure settings) and as large as possible (for collimation)
- Lights can be mounted on a physical dome, a handheld flash, or a swinging arc

- Object and camera remain in same position
- 35-60 raking light captures evenly distributed around a virtual hemisphere
- The radius should be consistent (for exposure settings) and as large as possible (for collimation)
- Lights can be mounted on a physical dome, a handheld flash, or a swinging arc


- Object and camera remain in same position
- 35-60 raking light captures evenly distributed around a virtual hemisphere
- The radius should be consistent (for exposure settings) and as large as possible (for collimation)
- Lights can be mounted on a physical dome, a handheld flash, or a swinging arc

- Object and camera remain in same position
- 35-60 raking light captures evenly distributed around a virtual hemisphere
- The radius should be consistent (for exposure settings) and as large as possible (for collimation)
- Lights can be mounted on a physical dome, a handheld flash, or a swinging arc



- Object and camera remain in same position
- 35-60 raking light captures evenly distributed around a virtual hemisphere
- The radius should be consistent (for exposure settings) and as large as possible (for collimation)
- Lights can be mounted on a physical dome, a handheld flash, or a swinging arc

- The position of the light in each capture must be measured or calculated
 - Since the radius is constant the light position can be calculated from the position of the highlight on a reflective sphere placed in the object frame
- For each pixel, a formula is calculated to best fit the captured data
- The PTM and RTI files store the coefficients necessary to calculate the luminosity for a given light position

- The position of the light in each capture must be measured or calculated
- For each pixel, a formula is calculated to best fit the captured data
 - The luminance of the pixel as a function of the position of the light
 - Earlier method uses second-order bi-quadratic polynomials (PTM)
 - Later method uses third-order hemispherical harmonics (HSH)
- The PTM and RTI files store the coefficients necessary to calculate the luminosity for a given light position

$$C = a_0 L_u^2 + a_1 L_v^2 + a_2 L_u L_v + a_3 L_u + a_4 L_v + a_5$$

- The position of the light in each capture must be measured or calculated
- For each pixel, a formula is calculated to best fit the captured data

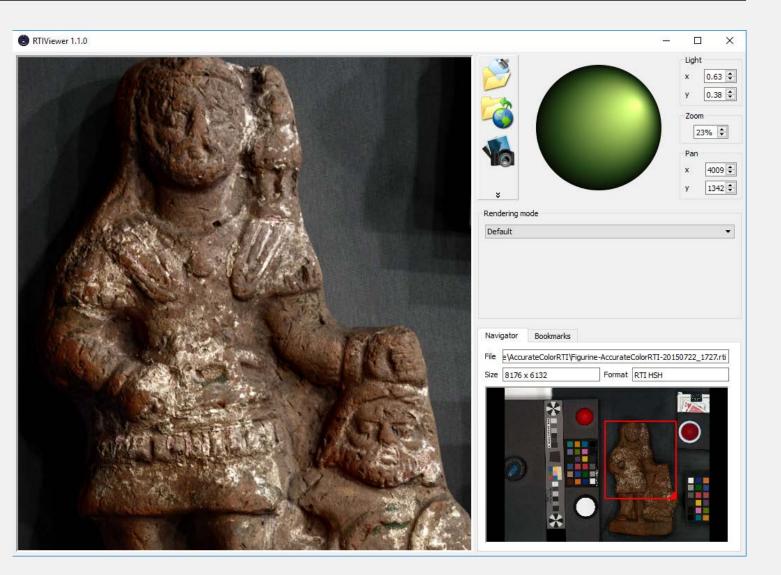
```
hsh_matrix[9*in->num_used+i] = 2*sqrt(35/M_PI) * cos(3*phi)*pow((cos(theta) - pow(cos(theta),2)),(3/2));
hsh_matrix[10*in->num_used+i] = (sqrt(210/M_PI) * cos(2*phi)*(-1 + 2*cos(theta))*(-cos(theta) + pow(cos(theta),2)));
hsh_matrix[11*in->num_used+i] = 2*sqrt(21/M_PI) * cos(phi)*sqrt(cos(theta) - pow(cos(theta),2))*(1 - 5*cos(theta) + 5*pow(cos(theta),2));
hsh_matrix[12*in->num_used+i] = sqrt(7/(2*M_PI)) * (-1 + 12*cos(theta) - 30*pow(cos(theta),2) + 20*pow(cos(theta),3));
hsh_matrix[13*in->num_used+i] = 2*sqrt(21/M_PI) * sqrt(cos(theta) - pow(cos(theta),2))*(1 - 5*cos(theta) + 5*pow(cos(theta),2))*sin(phi);
hsh_matrix[14*in->num_used+i] = (sqrt(210/M_PI) * (-1 + 2*cos(theta) - pow(cos(theta),2))*(1 - 5*cos(theta) + 5*pow(cos(theta),2))*sin(phi);
hsh_matrix[15*in->num_used+i] = 2*sqrt(35/M_PI) * pow((cos(theta) - pow(cos(theta),2))*(3/2))*sin(3*phi);
```

- Later method uses third-order hemispherical harmonics (HSH)
- The PTM and RTI files store the coefficients necessary to calculate the luminosity for a given light position

- The position of the light in each capture must be measured or calculated
- For each pixel, a formula is calculated to best fit the captured data
- The PTM and RTI files store the coefficients necessary to calculate the luminosity for a given light position
 - Either for each of three color channels
 - Or once accompanied by Cb and Cr channels
 - Luminance at non-captured light positions can be extrapolated
 - Surface normal is easily derivable

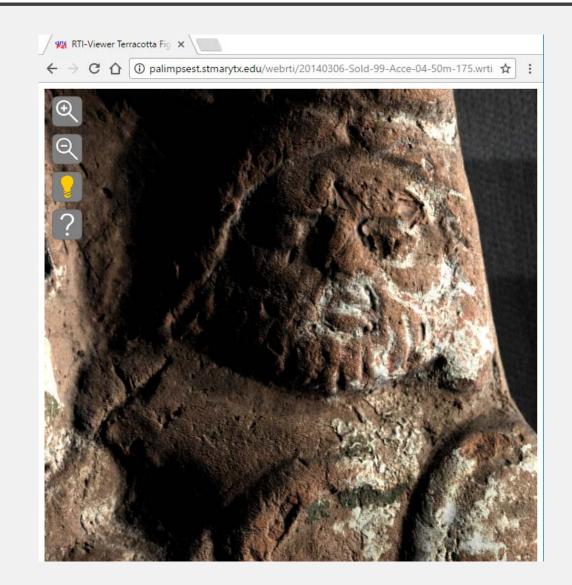
 $C = a_0 L_u^2 + a_1 L_v^2 + a_2 L_u L_v + a_3 L_u + a_4 L_v + a_5$

$$a_0^{Y}, a_1^{Y}, a_2^{Y}, a_3^{Y}, a_4^{Y}, a_5^{Y}, C_r, C_b$$


- The position of the light in each capture must be measured or calculated
- For each pixel, a formula is calculated to best fit the captured data
- The PTM and RTI files store the coefficients necessary to calculate the luminosity for a given light position
- Desiderata: 64-bit architecture, uncompressed input, more options for output, light position triangulation, evaluate discrete modal decomposition

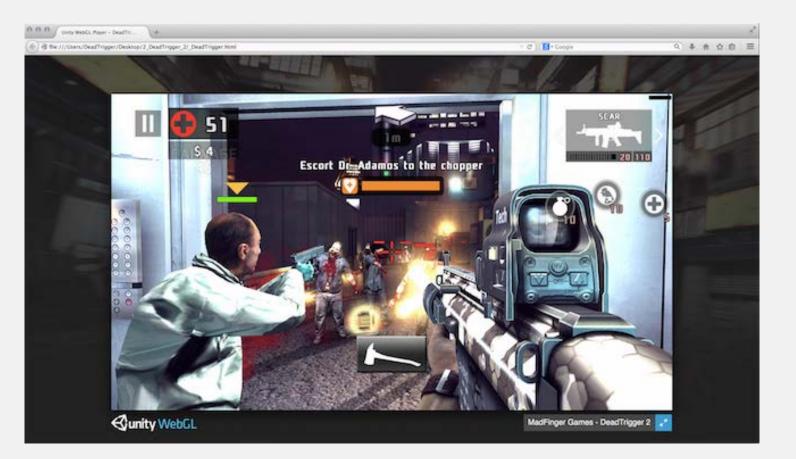
* jpeglib.h

- * Copyright (C) 1991-1998, Thomas G. Lane.
- * Modified 2002-2009 by Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- * This file defines the application interface for the JPEG library.
- * Most applications using the library need only include this file,
- \ast and perhaps jerror.h if they want to know the exact error codes. $\ast/$


RTIVIEWING

- Today
 - RTI Viewers
 - WebRTI using WebGL
- On the horizon
 - 3D engines
 - Virtual and augmented reality

RTIVIEWING


- Today
 - RTI Viewers
 - WebRTI using WebGL
- On the horizon
 - 3D engines
 - Virtual and augmented reality

RTI VIEWING

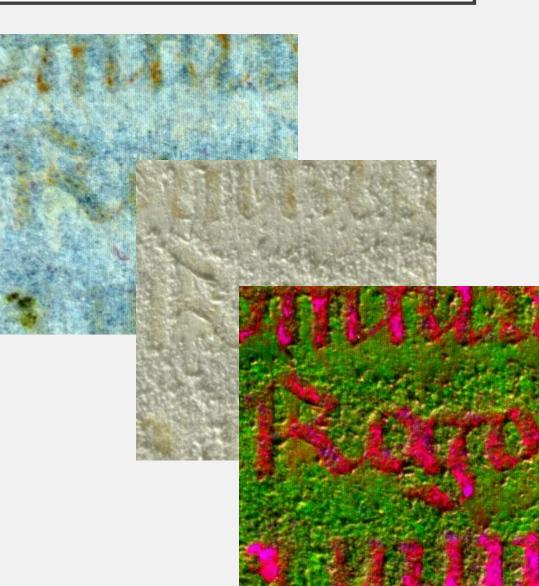
• Today

- RTI Viewers
- WebRTI using WebGL
- On the horizon
 - 3D engines
 - Virtual and augmented reality

RTIVIEWING

• Today

- RTI Viewers
- WebRTI using WebGL
- On the horizon
 - 3D engines
 - Virtual and augmented reality


SPECTRAL RTI

Spectral imaging

- Concerned with color (wavelengths in or near the visible light range of the electromagnetic spectrum)
- Typically strives for diffuse illumination to minimize texture highlights and shadows

• RTI

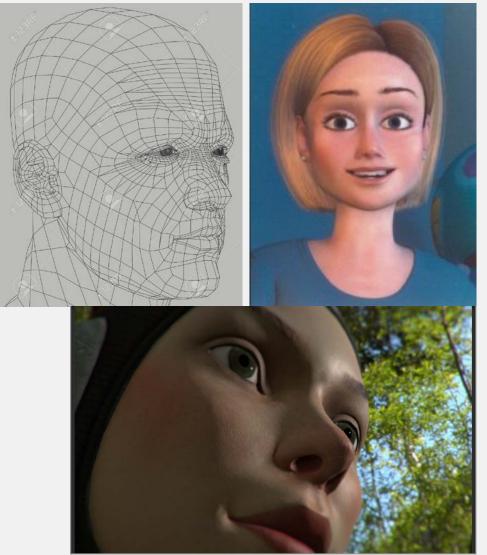
- Concerned with texture as an expression of luminance variation as a function of light position (glimmer, highlights, shadows)
- Typically pays no more attention to color than the three color channels of a DSLR

SPECTRAL RTI

- Spectral imaging
 - Concerned with color
- RTI
 - Concerned with luminance
- The distinction and complementarity of luminance and color in color spaces such as YCbCr and L*A*B*

SPECTRAL RTI

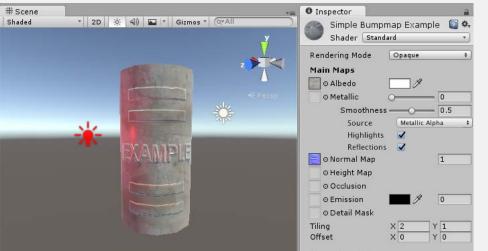
- Spectral imaging
 - Concerned with color
- RTI
 - Concerned with luminance
- The distinction and complementarity of luminance and color in color spaces such as YCbCr and L*A*B*
- The currently available Spectral RTI Toolkit combines luminance and chrominance before HSH fitting
- Future potential to direct color and luminance function data directly to layers in WebGL

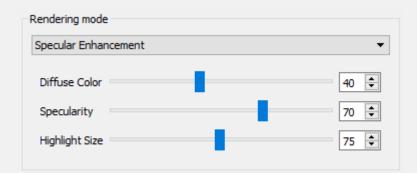

Features Business Explore	e Marketplace Pi	ricing	This repository Search	Sign in or Sign u
thanneken / SpectralRTI_Toolk	it		• Watch 2	★ Star 0 % Fork
↔ Code ① Issues 0 ۩ Pull red	quests 0 🕕 Proje	ects 0 Insights 🗸		
rocess Spectral RTI Images in Image.				
1 5 5				
26 commits	ំរូ 1 branch	🟷 0 releases	L 1 contributor	ಶ್ತ್ GPL-3.0
26 commits Branch: master • New pull request	ប្រំ 1 branch	♡ 0 releases		গ্রু GPL-3.0 Find file Clone or download ব
Branch: master New pull request		♥ 0 releases		
		𝔇 0 releases		Find file Clone or download
Branch: master New pull request thanneken committed on GitHub Minor	r bug fix 🛄 Initial commit	♥ 0 releases		Find file Clone or download
Branch: master New pull request thanneken committed on GitHub Minor LICENSE	r bug fix 🛄 Initial commit	onent Analysis Plugin		Find file Clone or download atest commit a71e86e on Apr 24
Branch: master New pull request thanneken committed on GitHub Minor LICENSE PCA_class	r bug fix Initial commit Principal Comp January 24, 201	onent Analysis Plugin		Find file Clone or download a atest commit a71e86e on Apr 24 9 months ago 7 months ago
Branch: master New pull request thanneken committed on GitHub Minor LICENSE PCA_class README.md	r bug fix Initial commit Principal Comp January 24, 201	onent Analysis Plugin 17 update		Find file Clone or download statest commit #71e86e on Apr 24 9 months ago 7 months ago 5 months ago

SpectralRTI_Toolkit

Process Spectral RTI Images in ImageJ

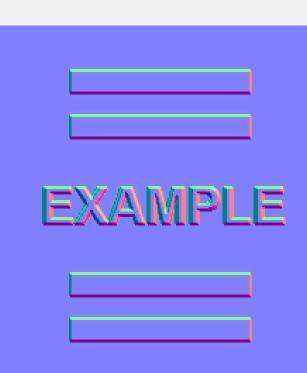
The toolkit processes the data from a Spectral RTI capture session. This data includes diffuse narrowband spectral images,


- Texture mapping is part of 3D
- Structural boundaries
 - Captured with laser scanning and photogrammetry
 - Processed as point clouds and polygon wire frames
- Surface texture
 - The appearance of a pixel on the surface of any one of those polygons as a function of ambient light
 - Primitive 3D used bare wire frame, solid colors, gradient shaders, or simple bitmaps for surfaces
 - Today's 3D uses bump mapping, surface normal mapping, specular mapping, occlusion mapping
 - Finer detail than polygons
 - Faster / less processing intensive than more polygons


- Texture mapping is part of 3D
- Structural boundaries
- Surface texture
- The integration of RTI captured texture maps into 3D models has not happened yet
 - Polynomial Texture Mapping and RTI began at HP Labs with 3D in mind
 - In the 3D world, most texture maps are not captured
 - In the RTI world, texture maps are not assigned to polygons in larger 3D models

- The language of 3D (Unity engine)
 - Albedo
 - Specular or metallic highlights and reflections
 - Surface normal
 - Occlusion / transparency
 - Emission

- The language of Spectral RTI
 - Diffuse color
 - Specular
 - Surface normal
 - Transmissive illumination captures
 - Fluorescence (roughly)



- The language of 3D (Unity engine)
 - Albedo
 - Specular or metallic
 - Surface ne
 - Occlusior
 - Emission

- The language of Spectral RTI
 - Diffuse color
 - Specular
 - Surface normal
 - Transmissive illumin
 - Fluorescence (rough

- The language of 3D (Unity engine)
 - Albedo
 - Specular or metallic highlights and reflections
 - Surface normal
 - Occlusion / trar
 - Emission


- The language of Spectral RTI
 - Diffuse color
 - Specular
 - Surface normal
 - Transmissive illumination of
 - Fluorescence (roughly)

- The language of 3D (Unity engine)
 - Albedo
 - Specular or metallic highlights and reflections
 - Surface normal
 - Occlusion / transparency

- The language of Specti
 - Diffuse color
 - Specular
 - Surface normal

- Transmissive illumination captures
- Fluorescence (roughly)

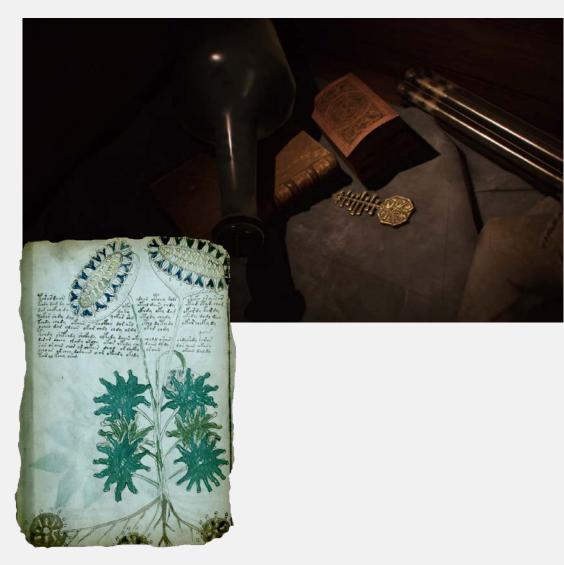
- The language of 3D (Unity engine)
 - Albedo
 - Specular or metallic highlights and reflections
 - Surface normal
 - Occlusion / transparency
 - Emission

- The language of Spectral RTI
 - Diffuse color
 - Specular
 - Surface normal
 - Transmissive illumination captures
 - Fluorescence (roughly)

CULTURAL HERITAGE BENEFITS

- In a virtual reality environment the entire user interface could have intuitive equivalents
 - Scholars could "hold the folio up to the light" rather than select the transmissive light source layer
 - Scholars could "flip the page" to distinguish show through rather than load the corresponding recto or verso
 - Teachers could point to features with a virtual hand following the movements of a physical hand rather than a mouse pointer

- Students could have a more natural experience of primary sources
- Teachers could situate a surface in context
 - An inscription on a monument
 - A folio in a codex
 - An icon in a chapel
- Exhibitors could interpret artifacts online or with a kiosk in a museum
 - More interactive than a coin with a mirror behind it
 - More interactive than a codex open to one folio


- Can cultural heritage projects afford this?
- Who (with money) cares?

• Can cultural heritage projects afford this?

- RTI technology today is mostly in an (underfunded) cultural heritage silo
- It will cost less to build a bridge to generalized technologies than to update and improve specialized tools
- WebGL and Unity engine are free, ubiquitous, maintained, and growing
- Who (with money) cares?

- Can cultural heritage projects afford this?
- Who (with money) cares?
 - Gaming
 - Generally as a driver of underlying hardware and software engines
 - Virtual reality trying to be more real
 - Cf. the Voynich manuscript in Assassin's Creed
 - Movies and television
 - Healthcare

- Can cultural heritage projects afford this?
- Who (with money) cares?
 - Gaming
 - Movies and television
 - Budget and number of people credited in a Pixar movie
 - Compare motion capture to captured surface texture
 - Healthcare

- Can cultural heritage projects afford this?
- Who (with money) cares?
 - Gaming
 - Movies and television
 - Healthcare
 - Texture of skin conditions, wounds, infections could be compared across time
 - And across geography when medical professionals are not available locally

TEXTURE IMAGING FROM CAPTURE TO ACCESS

Todd R. Hanneken, Ph.D. Jubilees Palimpsest Project Saint Mary's University, San Antonio http://jubilees.stmarytx.edu Demonstration: http://jubilees.stmarytx.edu/iiifp/